New limit on the Lepton Flavor Violating decay $\mu \rightarrow e\gamma$

Flavio Gatti - University and INFN of Genoa, Italy

FNAL, Sept. 1st, 2011

The MEG collaboration

Tokyo U. Waseda U. KEK

INFN & U Pisa INFN & U Roma INFN & U Genova INFN & U Pavia INFN & U Lecce

PSI

JINR Dubna BINP Novosibirsk

61 collaborators/5 countries

Kinematics

$$Ee = E\gamma = 52.8 \; MeV$$

$$\theta_{e\gamma} = 180^o$$

$$t_{e\gamma} \sim 0$$

$$B_{\rm prompt} \approx 0.1 \times B_{\rm acc} \qquad B_{\rm acc} \approx R_{\mu} \Delta E_e \Delta E_{\gamma}^2 \Delta \theta^2 \Delta t$$

Apparatus Overview

Stopped $\pi E5$ beam of 3 10⁷ μ /sec in a 150 μ m target

- Drift Chambers for e⁺ momentum (DCH) in Magnetic Field
- 2. Scintillation counters for e⁺ timing (TC) in Magnetic Field
- 3. Liquid Xenon calorimeter for γ energy and timing (LXe) (scintillation)

PSI muon beam

- Paul Scherrer Institut (CH) > Most intense continuous muon beam
- 1.6 MW proton accelerator
- Presently, more than 2 mA of protons (possible upgrade to 3 mA)
- Highly stable beam > 3 x 108 muons/sec @ 2 mA

Beam line

πE5 beam line at PSI

Optimization of the beam elements:

- Muon momentum ~ 29 MeV/c
- Wien filter for μ/e separation
- Solenoid to couple beam and spectrometer (BTS)
- Degrader to reduce the momentum for a 205 µm target

Constant Bending Radius solenoid (CoBRa)

	Constant p track	High p_T track
Uniform field		
CoBRa: Constant bending quick sweep away		

Tracking the Positrons: Drift Chambers

- 16 chambers radially aligned with 10° intervals
- · 2 staggered arrays of drift cells
- 1 signal wire and 2 x 2 vernier cathode strips made of 15 µm kapton foils and 0.45 µm aluminum strips
- Chamber gas: He-C₂H₆ mixture
- · Within one period, fine structure given by the Vernier circle

σ_R ~ 300 μm transverse coordinate (t drift)

 $\sigma_z \sim 700 \, \mu m$

longitudinal coordinate (Vernier)

A view of Drift chambers inside the Magnet CoBra

Timing (tracking) the positron

- Two layers of scintillators:
 Outer layer, read out by PMTs: timing measurement
 Inner layer, read out with APDs at 90°: z-trigger
- Resolution σ_{time}~ 40 psec (100 ps FWHM)

Exp. application (*)	Counter size (cm) (T x W x L)	Scintillator	PMT	λ_{ntt} (cm)	σ _t (meas)	σ _t (exp)
G.D.Agostini	3x 15 x 100	NE114	XP2020	200	120	60
T. Tanimori	3 x 20 x 150	SCSN38	R1332	180	140	110
T. Sugitate	4 x 3.5 x 100	SCSN23	R1828	200	50	53
R.T. Gile	5 x 10 x 280	BC408	XP2020	270	110	137
TOPAZ	4.2 x 13 x 400	BC412	R1828	300	210	240
R. Stroynowski	2 x 3 x 300	SCSN38	XP2020	180	180	420
Belle	4 x 6 x 255	BC408	R6680	250	90	143
MEG	4 x 4 x 90	BC404	R5924	270	38	

Best existing TC

Fully Tested at BTF (LNF-ITALY)

Timing Counter

Scintillating fibers

Timing Counter

The most important thing: a plastic Bag against the He atmosphere of CoBra

Special new plastic used for "mozzarella" 's bag (EVAL) has been produced with a thickness of 250 um (typically 25-50 um)

EVAL has one of the lowest He diffusivity coefficient among plastics: With 2 m² surface expose to 1 atm He We achieve 1-10 times the natural atmospheric He partial pressure

TC before insertion in the Magnet

LXe

- γ Energy, position, timing
- Homogeneous o.8 m³ volume of liquid Xe =
 2.7 t
 - 10 % solid angle
 - 65 < r < 112 cm
 - $|\cos\theta| < 0.35$, $|\phi| < 60.0$
- Only scintillation light
 - Read by 848 PMT 2" photo-multiplier tubes
 - Maximum coverage
 - Immersed in liquid Xe
 - Low temperature (165 K)
 - Quartz window (178 nm)
- Thin entrance wall
- Waveform digitizing @2 GHz
 - Pileup rejection

Lxe cryostat

Inner PMT array, Cryostat, final positioning

Digitizer for DAQ

All channels are readout by a GHz WFD

- DRS chip (Domino Ring Sampler)
 - Custom sampling chip designed at PSI (BW of 950 MHz)
 - o.2→5GHz sampling. →40 ps timing resolution
 - Sampling depth 1024 bins for 9 channels/chip
 - Full waveform is a handle to do pile-up rejection

Calibrations and Monitoring

Li(p,y)Be

LiF target at COBRA center 17.6MeV y

- ~daily calib. also for initial
- setup FMI

Alpha on wires

PMT QE & Att. L

Cold GXe LXe

Xenon Calibration

LED

PMT Gain

Higher V with light att.

Lower beam intensity < 107 Is necessary to reduce pileups

A few days ~ 1 week to get enough statistics

Laser

relative timing calib.

Nickel y Generator

An example: the alpha sources

- It is understood that in such a complex detector a lot of parameters must be constantly checked
- We have prepared several and redundant calibration and monitoring tools:
 - Single detector
 - PMT equalization for LXe and TIC
 - Inter-bar timing (TIC)
 - Energy scale
 - Multiple detectors
 - relative timing

Alpha-rings,

Reconstructed signal from alpha source onto thin wire in LXe

An example: the Lxe Calibration

- This calibration is performed routinely
- Muon target moves away and a crystal target is inserted
- Hybrid target (Li₂B₄O₇)
- Possibility to use the same target and select the line by
- changing proton energy

	A STORY OF THE STO	

Reaction	Peak energy	σ peak	γ-lines
Li(p,γ)Be	440 keV	5 mb	(17.6, 14.6) MeV
$B(p,\gamma)C$	163 keV	2 10 ⁻¹ mb	(4.4, 11.7, 16.1) MeV

Gamma Energy stability

Gamma Energy Calibration

$$\pi^- p \to \pi^0 n \to \gamma \gamma n$$

- negative pions stopped in liquid hydrogen target
- Tagging the other photon at 1800 provides monochromatic photons
- Dalitz decays were used to
- study positron-photon synchronization and time
- resolution: $\pi_o \rightarrow \gamma e + e -$

Gamma Position Resolution

Hit point resolution for photon conversion position was evaluated by

CEX run with Pb collimators ~ 5mm

Tey resolution

- Positron time measured by TC and corrected by ToF (DC trajectory)
- LXe time corrected by ToF to the conversion point
- RMD peak in a normal physics run corrected by small energy dependence;
- stable < 20ps</p>

Alignements

- alignment by CR & Michel e+
- DC B field target -LXe
- optical surveys
- DC: MILLEPEDE (like in CMS)
- target holes
- LXe: Pb collimators
- more detailed implementation of e+ correlation

The Blind Analysis

Analyis

Fully frequentist approach (Feldman & Cousins) with profile likelihood ratio ordering

PDF: methods of calculation

SIGNAL

from full signal MC (or from fit to endpoint)

E_γ: E_ε: 3-gaussian fit on data

 θ_{ev} : combination of e and gamma angular resolution from data

single gaussian from MEG trigger Radiative Decay (no cut on Eg) tey:

RADIATIVE

 E_e, E_v, θ_{ev} : 3D histo PDF from toy MC that smears and weighs Kuno-Okada distribution taking into account resolution and acceptance single gaussian with same resolution as signal tey:

ACCIDENTAL

from fit to t_{ey} sideband

from data

 θ_{ev} :from fit to t_{ev} sideband

flat t_{ey}:

Alternative observables definition

1) different algorithm for LXe **Timing**

2) Trigger LXe waveform digitizing electronics (E,)

PDF plots and resolutions

- Average upper tail for deep conversions
 - $\sigma_R = (2.1 \pm 0.15) \%$
- Systematic uncertainty on energy scale < 0.6%

- Resolution functions of core and tail components
 - core = 390 keV (0.74%)
- Positron angle resolution measured using multi-loop tracks
 - σ(φ) = 7.1 mrad (core)
 - σ(9) = 11.2 mrad

- Overall angular resolution combining
 - XEC+DCH+target
 - σ(φ) = 12.7 mrad (core)
 - σ(9) = 14.7 mrad

- 40 MeV < E_Y < 48 MeV
- σ_t is corrected for a small energydependence
 - (142 ± 15) ps
 - stable within 15 ps along the run
- MEGA had on RMD
 - 700 ps resolution

The calculation of BR

- The normalization factor is obtained from the number of observed Michel positrons taken simultaneously (prescaled) with the μ→eγ trigger
 - Cancel at first order
 - Absolute e+ efficiency and DCH instability
 - Instantaneous beam rate variations

B.R. =
$$N_{\text{sig}} \times (1.01 \pm 0.08) \times 10^{-12}$$

The Likelihood

• A $\mu \rightarrow e\gamma$ event is described by 5 kinematical variables

$$\vec{x_i} = (E_{\gamma}, E_e, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma})$$

 Likelihood function is built in terms of Signal, radiative Michel decay RMD and background BG number of events and their probability density function PDFs

$$-\ln \mathcal{L} (N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}})$$

$$= N_{\text{exp}} - N_{\text{obs}} \ln (N_{\text{exp}})$$

$$- \sum_{i=1}^{N_{\text{obs}}} \ln \left[\frac{N_{\text{sig}}}{N_{\text{exp}}} S(\vec{x_i}) + \frac{N_{\text{RMD}}}{N_{\text{exp}}} R(\vec{x_i}) + \frac{N_{\text{BG}}}{N_{\text{exp}}} B(\vec{x_i}) \right]$$

- Extended unbinned likelihood fit: mfit (Nsig, NRMD, NBG) in a wide region
- PDFs taken from
 - data
 - MC tuned on data
- Cuts:
 - $48 \le E\gamma \le 58 \text{ MeV}$ $50 \le Ee \le 56 \text{ MeV}$ $|Te\gamma| \le 0.7 \text{ ns}$ $|\varphi e\gamma|$, $|\theta e\gamma| \le 50 \text{ mrad}$

The Likelihood plots for 2009

- N_{sig} < 14.5 @ 90% C.L.,
 N_{sig} best–fit value = 3.0
- $N_{sig} = 0$ is in 90% confidence region
 - C.L @0: 40÷60% depending on the statistical approach

Accidental BG RMD Signal Total

Dashed lines: 90% C.L. UL of Nsig

Sidebands for 2009 data

2009 Blind Box Opening

... with event ranking

...a high ranked event...

- · Events in the signal region were checked carefully
- An event in the signal region

2009 data update

2009 updated lakelihood analysis

2010 analysis

2010 data after unblinding

Likelihood 2010 data

Total
Accidental
Radiative
Signal

2010 data

Likelihood Analysis

Performance summary

	2009	2010
Gamma Energy (%) Gamma Timing (psec) Gamma Position (mm)	1.9 96 5 (u,v), 6 (w)	1.9 67 5 (u,v), 6 (w)
Gamma Efficiency (%) e+ Timing (psec) e+ Momentum (keV)	58 107 310 (80% core)	59 107 330 (79% core)
e^+ θ (mrad) e^+ ϕ (mrad)	9.4 6.7	11.0 7.2
e+ vertex Z/Y (mm) e+ Efficiency (%) e+-gamma timing (psec)	1.5 / 1.1 (core) 40 146	2.0 /1.1 (core) 34 122
Trigger efficiency (%)	91	92
Stopping Muon Rate (sec ⁻¹) DAQ time/ Real time (days)	2.9×10 ⁷ 35/43	2.9×10 ⁷ 56/67
Expected 90% C.L. Upper Limit	3.3×10 ⁻¹²	2.2×10 ⁻¹²

2009 and 2010 data

Results summary

	BR(fit)	LL 90%	UL 90%
2009	3.2×10 ⁻¹²	1.7×10 ⁻¹³	9.6×10 ⁻¹²
2010	-9.9×10 ⁻¹³		1.7×10 ⁻¹²
2009+2010	-1.5×10 ⁻¹³		2.4×10 ⁻¹²

- systematic errors (in total 2% in UL) include:
 - relative angle offsets
 - correlations in e+ observables
 - normalizati
- (2009+2010expected UL = 1.6×10-12)

Summary

- New physics is now constrained by 5× tighter upper limit: BR < 2.4×10-12 @90% C.L.
- (Preprint available in arXiv)
- MEG is accumulating more data this and next year to reach O(10-13) sensitivity;
- Detector improvements/upgrade